GENERALIZED LAPLACE TRANSFORM AND TEMPERED Ψ-CAPUTO FRACTIONAL DERIVATIVE

نویسندگان

چکیده

In this paper, images of the tempered Ψ-Hilfer fractional integral and Ψ-Caputo derivative under generalized Laplace transform are derived. The results applied to find a solution an initial value problem for nonhomogeneous linear differential equation with order α n− 1 <α<n N. An illustrative example is given 0 <α<1 comparing solutions same but different tempering Ψ.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Hamilton formalism within Caputo ’ s derivative

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...

متن کامل

Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative

This paper presents necessary and sufficient optimality conditions for problems of the fractional calculus of variations with a Lagrangian depending on the free end-points. The fractional derivatives are defined in the sense of Caputo.

متن کامل

Transient MHD Convective Flow of Fractional Nanofluid between Vertical Plates

Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is obtained by using the Laplace transform and fractional deri...

متن کامل

Onmemo-viability of fractional equations with the Caputo derivative

*Correspondence: [email protected] Department of Mathematics, Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, Białystok, 15-351, Poland Abstract In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give a necessary condition for fractional viability of a locally closed set with respect to a nonli...

متن کامل

Variational Problems Involving a Caputo-Type Fractional Derivative

We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2023

ISSN: ['1648-3510', '1392-6292']

DOI: https://doi.org/10.3846/mma.2023.16370